Inhaled Air Pollution Particulate Matter in Alveolar Macrophages Alters local pro-inflammatory Cytokine and peripheral IFNγ Production in Response to *Mycobacterium tuberculosis*
Urban Air Pollution – A Global Phenomenon
What is Particulate Matter (PM)?

Urban particulate matter (PM): a carbon core coated with range of chemical species including reactive transition metals and organic hydrocarbons.

1 µm is 1/1000 millimeter
Global Mortality from Urban Outdoor and Household Air Pollution

In 2012 WHO reported 1 of 8 global deaths – as a result of air pollution exposure.

...air pollution is now the world’s largest single environmental health risk.

1600 cities worldwide are reporting air pollution levels

3.7 million deaths attributable to urban / outdoor air pollution

4.3 million deaths attributable to household / indoor air pollution

http://www.who.int/phe/health_topics/outdoorair/databases/en/

http://www.humanosphere.org/global-health/2017/03/
Increased Risk of TB development and Susceptibility to *M.tb* infection from Inhalation Exposure to Air Pollutants

- *Mycobacterium tuberculosis* (*M.tb*), that causes tuberculosis (TB) infects 10.4 million people and causes 1.4 million deaths annually.

- While most *M.tb* infection remain asymptomatic, immunosuppressive states of the host increase the risk of TB development.

- Exposure to tobacco smoke and household air pollution significantly increases risk of acquisition of *M.tb* infection and TB development.

- Recent studies indicate that urban outdoor air pollution exposure may increase risk of TB development and mortality of TB patients during TB therapy.
Urban Ambient PM \textit{in vitro} Exposure Effects on \textit{M. tb} Responses in A549 Respiratory Epithelial Cells

PM dose-dependent
- suppression of \textit{M. tb}-induced HBD-2 mRNA and protein expression
- loss of \textit{M. tb} growth control
- induction of cellular senescence (SA-\(\beta\)-gal)

Human Subject and PM Studies

Overall Hypothesis
Exposure to urban ambient air pollution particulate matter (PM) modifies human antimycobacterial immunity (impairing innate and adaptive effector cell functions).

Study Population

- Recruited 32 healthy, HIV-1 seronegative, nonsmoking (urine cotinine-negative) volunteers (female n= 11, male n=21)
- Residents of Iztapalapa (minimum 1 yr. prior to studies)
- Median age 28 yr. (min. 21, max. 46 yr.)
- 30 IGRA-, 2 IGRA+ (1 TST+) (TST+ 7/32 subjects)

Study Material

- Bronchoalveolar cells (BAC)
- PBMC

<table>
<thead>
<tr>
<th>Bronchoalveolar cells (BAC)</th>
<th>Alveolar Macrophages (%)</th>
<th>Alveolar Lymphocytes (%)</th>
<th>Alveolar Neutrophils (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>91.1</td>
<td>8.9</td>
<td>Scanty</td>
</tr>
<tr>
<td>Maximum</td>
<td>99.3</td>
<td>23.7</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>76.3</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>
Iztapalapa PM Collection Site

$\text{PM}_{2.5}$ diameter $< 2.5 \mu\text{m}$

PM_{10} diameter $< 10 \mu\text{m}$
PM Effects on Phagocytosis of *M. tb* in AM

<table>
<thead>
<tr>
<th>MOI</th>
<th>No PM</th>
<th>Cold dry</th>
<th>Warm dry</th>
<th>Rainy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PM (1µg/ml) vs PM (5µg/ml)
PM-Load in Alveolar Macrophages from Real-World Air Pollution-exposed Healthy Persons
PM Content in Alveolar Macrophages from Air Pollution-exposed Persons from inhalation

Proportion (%) of total alveolar macrophage area occupied by PM

<table>
<thead>
<tr>
<th>Subject</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Std error</th>
</tr>
</thead>
<tbody>
<tr>
<td>027M</td>
<td>1.79</td>
<td>0.08</td>
<td>5.34</td>
<td>0.38</td>
</tr>
<tr>
<td>022H</td>
<td>0.87</td>
<td>0.13</td>
<td>6.66</td>
<td>0.28</td>
</tr>
<tr>
<td>023M</td>
<td>4.45</td>
<td>0.13</td>
<td>14.05</td>
<td>1.04</td>
</tr>
<tr>
<td>025H</td>
<td>3.36</td>
<td>0.30</td>
<td>21.42</td>
<td>1.23</td>
</tr>
</tbody>
</table>
Wright’s-stained cytospin preparations of BAC from 30 participants were examined to assess proportions of AM containing PM (AM% with PM) and the mean and minimum and maximum areas of the total AM area occupied by PM (PM load per AM). 1000x-magnified digital bright field microscopy – and Image J analysis.
PM Effects on cytokine Production in BAC and PBMC

Open symbol BAC with lower %AM with PM
Red symbol BAC with higher %AM with PM

Open symbol BAC with lower PM load per AM
Blue symbol BAC with higher PM load per AM
Correlations between AM PM Burden and Cytokine Responses of BAC

- **NO PM**
 - TNF-α in BAC
 - $r = -0.6333$
 - $P = 0.0380$
 - IL-1β in BAC
 - $r = -0.7866$
 - $P = 0.0078$

- **PM (10 µg/ml)**
 - TNF-α in BAC
 - $r = -0.6667$
 - $P = 0.0294$
 - IL-1β in BAC
 - $r = -0.7000$
 - $P = 0.0216$

- **M.tb (MOI 1)**
 - PM (10µg/ml)
 - $r = -0.6833$
 - $P = 0.0262$
 - $r = -0.6167$
 - $P = 0.0429$

- **M.tb (MOI 10)**
 - PM (10µg/ml)
 - $r = -0.7000$
 - $P = 0.0216$
 - $r = -0.6333$
 - $P = 0.0380$
 - $r = -0.6167$
 - $P = 0.0429$
Correlations between AM PM Burden and IFNγ Responses in BAC and PBMC
Conclusions

- *M. tb* phagocytosis is not significantly altered by PM-exposure of AM implying that subsequently observed host immune modulations are not due to differences in cellular *M. tb* uptake.
- High level of PM burden was observed in freshly isolated BAC.
- PM load in AM is inversely correlated with *M. tb*-induced IL-1β and TNF-α-production in BAC – whereas such correlations cannot be found in PBMC.
- Interestingly, PM load in AM in response to PPD is inversely correlated with the IFN-γ production in PBMC. Since peripheral blood IFN-γ responses are important biomarkers of *M. tb* infection, PM exposure may affect IFN-γ readouts following TB vaccination and *M. tb* immunodiagnostics.
- The observed suppressive effects of PM on human local (BAC) and systemic (PBMC) antimycobacterial immune responses to *M. tb* may lead to increased susceptibility to pulmonary infection.
Acknowledgements

Srijata Sarkar PhD
Cesar Rivas Santiago PhD
Funmi Ibironke cand. PhD
Pamela A. Ohman Strickland PhD
Qingyu Meng PhD
Yeongkwon Son PhD
Michelle Ruidiaz
George Rhoads MD

Martha Torres PhD
Claudia Carranza
Dante Escobedo Sanchez MD
Yolanda Gonzalez PhD
Marcella Munoz MD
Norma Guzman
Maria de Jesus

National Cancer Institute
Natalia Manzano PhD
Raul Quintana Belmares
Martha Angelica Hernandez Guzman

Funding
NIEHS PP30 ES005022 pilot grants
2006, 2012
NIEHS 1R21ES016928-01
NIEHS 1RO1ES020382-01A1