Program integration to achieve the global nutrition targets

Christine P. Stewart, MPH, PhD
Associate Professor
Department of Nutrition, Program in International and Community Nutrition
Stunted growth and development, anemia, and overweight/obesity are associated with an array of often overlapping risk factors.

Integrated programs are appealing as an efficient way to reach vulnerable households.
Exogenous factors associated with anemia

Thurnham & Northrop-Clewes in Kramer & Zimmerman, Nutritional Anemia, 2007
Obesity

Social Norms and Values

Sectors of Influence

Behavioral Settings

Individual Factors

Food and Beverage Intake

Physical Activity

Energy Intake

Energy Expenditure

Energy Balance

- Government
- Public Health
- Health Care
- Agriculture
- Education
- Media
- Land Use and Transportation
- Communities
- Foundations
- Industry
 - Food
 - Beverage
 - Restaurant
 - Food Retail
 - Physical Activity
 - Leisure and Recreation
 - Entertainment

- Demographic Factors (e.g., age, sex, SES, race/ethnicity)
- Psychosocial Factors
- Gene-Environment Interactions
- Other Factors

Communities
- Worksites
- Health Care
- Schools and Child Care
- Home

IOM, Progress in Preventing Childhood Obesity, 2007
Nutrition sensitive programs and approaches

- Agriculture & food security
- Social safety nets
- Early child development
- Maternal mental health
- Women’s empowerment
- Child protection
- Classroom education
- Water quality, hygiene, sanitation systems
- Health and family planning

Ruel et al, Lancet, 2013
How might WASH programs impact nutrition?

“Vicious Cycle” of Undernutrition & Infection

- Complement system impaired and decreased lysozyme levels in leukocytes
- Secretory IgA levels are low and antibody responses reduced
- Reduced cell-mediated immune response
- Phagocytic & bactericidal activities reduced

- Loss of appetite
- Reduced food intake
- Malabsorption of nutrients
- Metabolic losses

West, Stewart, Caballero, & Black, 2011
Sanitation and hygiene are associated with stunting

Height-for-age and access to toilets

Hygiene, exposure to animals & stunting

<table>
<thead>
<tr>
<th>Stunting</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal corral in sleeping room</td>
<td>2.43 (1.08, 5.43)*</td>
</tr>
<tr>
<td>Mother has visibly dirty hands</td>
<td>1.44 (0.69, 3.00)</td>
</tr>
</tbody>
</table>

Spears, 2013

Community-led total sanitation program improved growth and reduced stunting, particularly among <2 y

- CLTS reduced stunting by 6 percentage points
- Improved child height-for-age by 0.18 SD
 - ↑ 0.24 height-for-age among children <2 y at baseline

Could integrated WASH+Nutrition programs have a larger impact on growth than stand-alone programs?
Integrated nutrition and child development

- Early childhood is an important period for both nutrition as well as child development.
- In many LMIC settings, health and nutrition activities are already operational, but early child development (ECD) interventions are less common.
- Combining nutrition + ECD offers an opportunity to deliver both interventions at marginal extra cost and it is possible that there could be synergistic benefits. But, there is a risk of intervention dilution when combined.
- A systematic review concluded that there was some evidence that the effects of nutrition + ECD interventions were additive, but no studies have been conducted at large scale. (Grantham-McGreggor et al, 2014)
Original Article

Cluster-randomized trial on complementary and responsive feeding education to caregivers found improved dietary intake, growth and development among rural Indian toddlers

Shahnaz Vazir*, Patrice Engle†, Nagalla Balakrishna‡, Paula L. Griffiths‡, Susan L. Johnson†, Hilary Creed-Kanashiro**, Sylvia Fernandez Rao*, Monal R. Shroff†† and Margaret E. Bentley‡‡

*Behavioral Sciences Unit of Field Studies, National Institute of Nutrition (ICMR), Hyderabad, India; †Department of Psychology and Child Development, Cal Poly State University, San Luis Obispo, California, USA; ‡Division of Statistics, National Institute of Nutrition (ICMR), Hyderabad, India; ††School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK; **Department of Pediatrics, Section of Nutrition, University of Colorado Denver, Aurora, Colorado, USA; ‡‡Instituto de Investigación Nutricional, Av La Molina 1885, Lima, Peru; and ††Department of Epidemiology, University of Michigan, Michigan, USA, and ‡‡Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
Study design

Control
- Routine ICDS services
 - Center-based supplemental food to 1-6 y olds, pregnant & lactating women
 - Home visit counseling on breastfeeding and complementary feeding
 - Growth monitoring monthly
 - Non-formal preschool education for 3-5 y old children

Complementary feeding
- Routine ICDS services PLUS:
 - More frequent visits by trained village women
 - 11 age-appropriate intervention messages and materials on complementary feeding and sustained breastfeeding

Complementary feeding and play
- Routine ICDS services PLUS
 - Complementary feeding intervention package PLUS
 - 8 age-appropriate messages on responsive feeding
 - 8 child stimulation messages and 5 toys.
 - Messages and skills focused on how to understand and respond to infants cues of hunger/appetite or satiety and messages on play and stimulation

Vazir et al, Matern Child Nutr, 2012
Results

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Complementary feeding group</th>
<th>Complementary feeding plus play group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge of complementary feeding</td>
<td>Improved</td>
<td>Improved</td>
</tr>
<tr>
<td>Reported consumption of nutritious complementary foods</td>
<td>Improved</td>
<td>Improved</td>
</tr>
</tbody>
</table>
| Infant growth | Greater change in length from 3-15 m
No difference in weight or weight change | No difference |
| Motor development | No difference | No difference |
| Mental development | No difference | Improved |

Vazir et al, Matern Child Nutr, 2012
Potential risk associated with integrated programs

- They may fail to deliver equal benefits compared to stand alone programs
 - Overload the capacity of the program or front line workers to deliver the intervention
 - Overload the target beneficiaries with too many messages
- Uptake of the targeted behaviors might be lower if focus is diluted
- Benefits may not be additive
What works? How? Where?

Program components
- Maternal & child nutrition
- Water, sanitation, hygiene
- Child stimulation, responsive parenting

Program implementation pathways

Impact / outcomes
- Child growth
- Anemia
- Early child development
How?

Biological pathways

Program components
- Maternal and child nutrition
- Water, sanitation, hygiene
- Child stimulation, responsive parenting

Program implementation pathways
- Intervention delivery (supplement distribution, hardware distribution)
- CHP trainings, household visits, women’s group meetings
- Uptake of the interventions (supplement adherence, feeding practices, food storage, water quality, toys & books available…)

Impact / outcomes
- Child growth
 - Anemia
- Early child development

Biospecimens:
- Blood
- Stool
- Saliva
- Environmental samples
"The wonder and horror of epidemiology is that it’s not enough to just measure one thing very accurately. To get the right answer, you may have to measure a great many things very accurately.”

-Jerry Avorn
Conclusions

• Many of the nutritional problems highlighted with the global nutrition targets are associated with risk factors operating at multiple levels. Multi-sectoral or multi-level solutions should be considered.

• Integrated interventions offer potential to help achieve the targets, but evidence of the benefits of integration vs. stand-alone programs is lacking.

• To really understand what works, where, and how, we need to strengthen our scientific approach impact evaluation, program evaluation, and reporting of results.
Acknowledgements

Collaborators

- **University of California, Davis**: Kathryn Dewey, Jane Heinig, Steve Vosti
- **International Center for Diarrheal Disease Research, Bangladesh**: Leanne Unicomb, Mahbub Rahman, Tahmeed Ahmed, Fahmida Tofail, Malay Mridha
- **Innovations for Poverty Action**: Clair Null
- **University of California, Berkeley**: Jack Colford, Ben Arnold, Alan Hubbard, Lia Fernald, Patricia Kariger
- **Kenya Medical Research Institute**: Sammy Njenga
- **Johns Hopkins University**: Peter Winch, Elli Leontsini, Keith West
- **USDA**: Lindsay Allen, Kevin Laugero

Collaborators

- **Stanford University**: Steve Luby, Amy Pickering, Audrie Lin, Ann Weber
- **University College of London**: Tom Williams
- **The World Bank**: Emanuela Galasso
- **University of Tampere**: Per Ashorn
- **Washington University, St. Louis**: Lora Iannotti
- **PAHO**: Chessa Lutter

Funders

- The Bill and Melinda Gates Foundation
- Thrasher Research Fund
- Mathile Institute
- Center for Collaborative Research on WIC Nutrition Education Innovations
- World Bank
Thank you!