Integrating Imaging, Biomarkers, and Environmental Data to Assess Alzheimer's Disease Progression Across Diverse Populations

Tia Warrick, DHSc, MPH; Khushi R. Kanani; Prevena Ramakrishnan; Manali Misra; Snabu Neupane; Kaitlynn N. Balmer-Brown Juniata College; Huntingdon, PA

Introduction	Methods	Conclusion		
Alzheimer's disease (AD) is a progressive neurodegenerative disorder influenced by genetic, environmental, and biological factors. Understanding these interactions is critical for early detection and intervention. Imaging, biomarkers, and environmental exposures provide complementary insights into AD progression, helping to identify at-risk populations and potential intervention targets. This study uniquely integrates neuroimaging, biomarker profiles, and environmental risk data to assess their combined effects on cognitive decline across diverse populations, an area with limited research.	 ADNI cohort data (ADNI1–ADNI4) was extracted, cleaned, combined, and recoded for analysis, including cognitive, biomarker, sociodemographic, and environmental risk data. Cognitive assessments (MMSE, ADAS-Cog, MoCA, CDR, NTB) measure memory, executive function, and disease severity. Sociodemographic factors (age, gender, ethnicity, education, home type) assess disparities in AD risk. Biomarkers (MRI hippocampal atrophy, PET amyloid/tau, CSF amyloid-β/tau, and NFL) track neurodegeneration, while environmental risk factors (RSEI, occupational exposure, home type) assess external contributions to AD progression. Statistical analyses included linear regression, interaction models, and ANOVA to assess relationships between environmental risk, biomarkers, and cognitive decline. 	 Higher environmental exposure is associated with increased amyloid accumulation, as evidenced by lower CSF Amyloid-β (p < 0.001) and higher PET Amyloid SUVR (p < 0.001), though no significant differences were observed in hippocampal atrophy or tau levels. Cognitive decline is more pronounced in high-exposure participants, with greater dementia severity (CDR, p = 0.002) and faster cognitive decline (NTB, p < 0.001), while ADAS-Cog and MoCA scores remained unaffected. The detoxification gene EPHX1 is significantly associated with cognitive impairment (p = 0.0356), suggesting that exposure to environmental toxins, particularly PAHs, may contribute to neurodegeneration. 		

Results

 Table 1. Sociodemographic Differences by Environmental Exposure Group

Variable	Overall (N=5101)	Low Exposure (N=4701)	Medium Exposure (N=133)	High Exposure (N=267)	p-value
Demographics					
Age (years), Mean ± SD	84.7 ± 10.4	85.4 ± 10.23	76.6 ± 8.56	75.7 ± 8.7	< 0.001*
Gender, n (%)					
- Male	2561 (52.0%)	2456 (52.6%)	70 (52.6%)	120 (44.9%)	0.066
- Female	2466 (48.0%)	2245 (47.7%)	63 (47.3%)	147 (55.0%)	0.066
Ethnicity, n (%)					
- White	4813 (94.3%)	4433 (94.6%)	119 (90.15%)	242 (90.9%)	0.007*
- Black	255 (5.0%)	219 (4.7%)	13 (9.8%)	21 (7.9%)	0.007*
- Other	35 (0.7%)	32 (0.68%)	0 (0.0%)	3 (1.1%)	0.007*
Marital Status, n (%)					
- Married	3864 (73.3%)	3573 (73.6%)	92 (69.7%)	184 (69.7%)	0.107
- Widowed	618 (11.7%)	572 (11.8%)	19 (14.4%)	25 (9.5%)	0.107
-Divorced	519 (9.8%)	470 (9.7%)	15 (11.4%)	30 (11.4%)	0.107
-Never Married	236 (4.5%)	209 (4.3%)	6 (4.5%)	20 (7.6%)	0.107
-Unknown	25 (0.47%)	23 (0.47%)	0 (0.0%)	2 (0.76%)	0.107
-Domestic Partnership	10 (0.18%)	8 (0.16%)	0 (0.0%)	2 (0.76%)	0.107
Education Level, n (%)					
- Primary & Secondary	782 (15.3%)	554 (15.3%)	19 (9.9%)	33 (10.0%)	0.792
- Post-Secondary	997 (19.5%)	913 (25.3%)	22 (11.5%)	56 (16.9%)	0.792
- Graduate	3324 (65%)	3054 (59.4%)	88 (78.8%)	170 (72.9%)	0.792
Home Type, n (%)					
- House (owned or					< 0.001*
rented)	3601 (68.4%)	3387 (69.9%)	67 (50.8%)	133 (50.4%)	
- Condo/Co-op (owned)	585 (11.11%)	549 (11.3%)	7 (5.3%)	26 (9.8%)	< 0.001*
- Apartment (rented)	391 (7.42%)	355 (7.3%)	11 (8.3%)	22 (8.3%)	< 0.001*
-Mobile Home	41 (0.77%)	41 (0.85%)	0 (0.0%)	0 (0.0%)	< 0.001*
-Retirement Community	178 (3.38%)	164 (3.4%)	7 (5.3%)	6 (2.3%)	< 0.001*
-Assisted Living	53 (1%)	48 (0.99%)	0 (0.0%)	4 (1.5%)	< 0.001*
-Skilled Nursing Facility	8 (0.15%)	8 (0.16%)	0 (0.0%)	0 (0.0%)	< 0.001*
- Other	54 (1%)	53 (1.1%)	0 (0.0%)	1 (0.38%)	< 0.001*
Family History of AD,					
n(%)					
-No	2965 (66.9%)	2821 (66.8%)	39 (61.9%)	86 (67.7%)	0.684
-Yes	1459 (32.9%)	1391 (32.9%)	24 (38.1%)	41 (32.3%)	0.684
Co-Morbidity, n(%)					
-No	19 (0.35%)	18 (0.37%)	0 (0.0%)	1 (0.37%)	0.615
-Yes	5280 (99.6%)	4859 (99.6%)	133 (100%)	266 (99.6%)	0.615
Serious Adverse Event,					
n(%)					
-No	4905 (92.8%)	4528 (93.0%)	123 (92.5%)	243 (91.0%)	0.454
-Yes	376 (7.11%)	340 (6.9%)	10 (7.5%)	24 (8.9%)	0.454

Alzheimer's cases are expected to triple by

Table 2. Cognitive Assessments by Environmental Exposure Group

Variable	Overall (N=5101)	Low Exposure (N=4701)	Medium Exposure (N=133)	High Exposure (N=267)	p-value
Baseline Cognitive Function					
ADI Score	3.8 ± 2.53	4.0 ± 4.24	3.9 ± 2.43	3.77 ± 2.57	0.886

Note: This table highlights significant differences in age, ethnicity, and home type across environmental exposure groups, while education, co-morbidities, and adverse events showed no significant variation.

2050, yet environmental risk remains overlooked. **Our findings show that** high environmental exposure is linked to 46% lower CSF Amyloidβ (p < 0.001)—a key indicator of increased amyloid plaque buildup and faster disease progression.

MMSE (Mini-Mental State Exam), Mean±SI	$) 26.01 \pm 4.37$	25.9 ± 4.40	26.9 ± 3.11	26.42 ± 3.91	0.011*
ADAS-Cog, n(%)					
-Fold a letter	738 (55.19%)	717 (55.0%)	2 (50%)	5 (55.5%)	0.711
-Put letter in envelope	339 (25.35%)	330 (25.4%)	1 (25%)	1 (11.1%)	0.711
-Seal envelope	147 (10.99%)	145 (11.1%)	0 (0.0%)	2 (22.2%)	0.711
-Address envelope	65 (4.86%)	64 (4.9%)	1 (25%)	0 (0%)	0.711
-Indicate where stamp goes	27 (2.02%)	26 (1.9%)	0 (0.0%)	1 (11.1%)	0.711
-No completed	5 (0.37%)	5 (0.38%)	0 (0.0%)	0 (0.0%)	0.711
Cognitive Decline (EDCog)	19.66 ± 10.3	20.46 ± 12.43	19.33 ± 7.29	19.06 ± 9.29	0.354
MoCA (Montreal Cognitive Assessment)	12.95 ± 4.97	12.86 ± 5.01	13.28 ± 4.96	13.46 ± 4.7	0.260
Clinical Dementia Rating (CDR)	1.82 ± 2.54	1.82 ± 2.53	2.51 ± 3.12	2.06 ± 2.86	0.002*
Cognitive Decline (NTE	3) 4.28 ± 1.09	4.29 ± 1.08	3.9 ± 1.4	3.85 ± 1.29	<0.001*
Baseline Cognitive Decline	20.2 ± 9.7	21.2 ± 10.29	10.2 ± 4.6	13.2 ± 6.07	<0.001*

Note: This table compares cognitive function across low, medium, and high environmental exposure groups. Significant differences were found in MMSE (p = 0.011), CDR (p = 0.002), NTB (p < 0.001), and baseline cognitive decline (p < 0.001), while ADAS-Cog and MoCA showed no significant variation.

Case 123_S_0072: High Environmental Exposure and Cognitive Function

Age: 67 years	Age: 70.9 years	Ag	ge: 70 years	Age: 89 years		
Caption : This participant had low environmental exposure with stable cognitive function and no significant neurodegeneration.		Caption: This	Caption: This participant shows cortical thinning, hippocampal shrinkage,			
		ventricular ex	ventricular expansion, and increased CSF spaces, all indicating progressive			

brain atrophy associated with Alzheimer's disease.

Acknowledgement

Data used in this study were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI provided access to the data but was not involved in the analysis, interpretation, or writing of this report. A full list of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

