

Innovative Protocols for Improved HLA Typing and Engraftment Monitoring in Sickle Cell Disease Management

Center for Global Health

Authors: Jahnavi Muppirala¹, Caden Traversari¹, Dr. Olufunmilayo Olopade¹, Dr. Siana Nkya², Aisha Rifai², Harvest Mariki² ¹ Center for Global Health, University of Chicago ² Muhimbili University of Health and Allied Sciences Teaching Hospital and University

Background

- Sickle cell disease (SCD) has high morbidity and mortality in Tanzania

- Hematopoietic stem cell transplantation (HSCT) is the only curative treatment but often results in complications like graft-versus-host disease (GVHD) due to poor donor matching and/or monitoring of chimerism rates

- Our study focused on developing standardized preand post-transplant protocols for HLA typing and chimerism detection at Muhimbili University of Health and Allied Sciences (MUHAS) in Dar es Salaam, Tanzania

Objectives

- Enhance donor selection through HLA typing, focusing on optimizing polymerase chain reaction (PCR) protocols to reduce errors and increase efficiency.
- 2. Strengthen post-transplant monitoring by introducing flow cytometry-based detection of erythroid chimerism.
- 3. Identify locally adaptable strategies to improve long-term patient outcomes.

Methods

- We conducted a comprehensive review of the existing HLA typing protocols at MUHAS through collaboration with laboratory technicians, sickle cell specialists, hospital administrators, and patients.

- In parallel, we performed an extensive literature review of pre- and post-transplant methods across multiple databases

Results

Pre-Transplant Donor Matching Alternatives to proposed HLA sequencing:

Method	Advantages	Disadvantages
Whole- Genome Sequencing (WGS)	Comprehensive coverage of entire genome, detects structural variations, novel allele discovery	High cost, data complexity, less targeted for HLA regions
Whole- Exome Sequencing (WES)	Targeted and cost-effective for coding regions, suitable for clinical settings	Limited to exons, coverage gaps, significant data analysis required
Hybrid Capture- Based Methods	High specificity, comprehensive HLA coverage, customizable	Higher cost and complexity, technical challenges, robust data analysis needed

Post-Transplant Engraftment Monitoring

Alternative for Detecting Chimerism:

Method	Advantages	Disadvantages
WBC Chimerism	Established, highly sensitive (~1-5% sensitivity)	Limited in assessing engraftment as RBCs engraft non-linearly with white blood cells (WBCs)
RBC- specific flow cytometry	Specifically assesses red blood cell (RBC) engraftment, able to detect both nucleated RBC precursors + mature RBCs	Can be confounded by antigens on transfused RBCs (would take 4 months post-transfusion to accurately detect chimerism)

- The proposed use of high- fidelity enzymes such as repliQa HiFi ToughMix decreases PCR error rates and processing times by 2-3 times thereby enhancing donor matching in HSCT.

- The use of flow cytometry to measure levels of the CD71+ reticulocytes enhances early prediction of donor RBC rejection

Discussion

Pre-transplant Improvements:

- RepliQa HiFi ToughMix offers significant advantages over the current enzyme (DreamTaq), including 90x higher fidelity, 2.5x faster processing, and the ability to amplify longer sequences (up to 24 kb)
- RepliQa is approximately four times more expensive than DreamTaq (\$1,500 vs. \$350 for 500 reactions), which may pose challenges in resource-constrained settings

Post-transplant Monitoring:

- Flow cytometry is more effective than current methods for early detection of donor RBC rejection
- MUHAS is equipped with two clinical flow cytometers (DxFLEX and BC FACSCanto)
- Current challenges include the need for highly trained staff and antigen-specific knowledge of recently transfused RBCs

Conclusion

Ongoing challenges in Africa include limited resources for pre- and post-transplant protocols, with expensive high-fidelity PCR and advanced flow cytometry techniques. However, the proposed interventions pointed at both pre- and post- transplant care have the potential to improve donor matching and early detection of engraftment success to bolster patient outcomes

Acknowledgements

Funding: Susan and Richard Kiphart Family Foundation, The University of Chicago Center for Global Health