Systems Analysis in Public Health Education: A Call to Action

Charles E. Phelps, Ph.D.
University of Rochester
and
Guru Madhavan, Ph.D.
Institute of Medicine, National Academy of Sciences

2015 Annual Meeting
Consortium of Universities for Global Health
Boston, MA
Cost-Effectiveness Analysis in Health and Health Care

• The world of public health recommends cost-effectiveness analysis.
 • WHO
 • World Bank
 • NICE in British NHS
 • Researchers

• Analysis rooted in economic utility maximization
 • Garber and Phelps, 1996,
 • Meltzer, 1996,
 • Lee, 2008

• Usually comes with a disclaimer.
Typical Disclaimer

“...cost–effectiveness is only one criterion among many that influence decision-making in public health. When deciding to implement an intervention, efficiency must always be balanced with other criteria, including implementation capacity, feasibility and impact on poverty and equity.”*

Cost-Effectiveness Analysis is Incomplete

• Cannot handle issues of equity and distribution.
• Cannot capture real-world cost structures.
 • fit with existing vaccine schedules
 • cold-chain requirements.
• Cannot capture indirect effects.
 • fear and dread created by Ebola, leprosy.
• Cannot capture risk in health utilities.
 • QALYs, DALYs.
• Cannot deal with major paradigm shifts.
 • pandemics.
Needed: Multi-Criteria Systems Analysis

• Several techniques.
 • Analytic hierarchy process (AHP).
 • Multi-attribute utility theory (MAUT).
 • Linear programming, and more.

• Preference elicitation.
 • What is valuable?
 • Individuals and groups.

• SMART Vaccines.
 • An IOM-NAE working prototype for decision support.
 • Funded by HHS (NVPO, NIH Fogarty International Center)
 • www.nap.edu/smartvaccines
More About SMART Vaccines

• **35 attributes** are available.
 • One of which is cost-effectiveness.

• **Blends computational and value models.**
 • Ranking
 • Weighting
 • Sensitivity analysis

• **Population-specific and vaccine data.**
 • Demographics
 • Disease burden and treatment costs.
 • Vaccine product profiles.

• **SMART Scores.**
 • Unique to each user.
How cost-effectiveness and systems analysis differ.
Attribute Selection and Weighting

SMART Vaccines

Rank attributes in order of importance (1 = MOST IMPORTANT) and fine tune weights by adjusting sliderbar.

<table>
<thead>
<tr>
<th>Attributes Selected</th>
<th>Least Favorable</th>
<th>Most Favorable</th>
<th>Rank</th>
<th>Modify</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost-Effectiveness ($/QALY)</td>
<td>776000</td>
<td>0</td>
<td>1</td>
<td></td>
<td>52%</td>
</tr>
<tr>
<td>Disease Raises Fear and Stigma in the Public</td>
<td>no</td>
<td>yes</td>
<td>2</td>
<td></td>
<td>27%</td>
</tr>
<tr>
<td>Serious Pandemic Potential</td>
<td>no</td>
<td>yes</td>
<td>3</td>
<td></td>
<td>15%</td>
</tr>
<tr>
<td>Eradication or Elimination of the Disease</td>
<td>no</td>
<td>yes</td>
<td>4</td>
<td></td>
<td>6%</td>
</tr>
</tbody>
</table>

Relative Weight of Attribute Differences

![Relative Weight Graph](image-url)
Cost-Effectiveness Analysis

SMART Vaccines

Select vaccine candidates to compare. Set attributes and scores. View SMART Score calculated for total population.

Attributes Selected

<table>
<thead>
<tr>
<th>Attributes Selected</th>
<th>United States Vaccine Candidates: Values (Scores)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost-Effectiveness ($/QALY)</td>
<td>10836 (99)</td>
</tr>
<tr>
<td>Disease Raises Fear and Stigma in the Public</td>
<td>no (0)</td>
</tr>
<tr>
<td>Serious Pandemic Potential</td>
<td>no (0)</td>
</tr>
<tr>
<td>Eradication or Elimination of the Disease</td>
<td>no (0)</td>
</tr>
</tbody>
</table>

SMART Score

Legend:
- Health
- Economic
- Public
- Intangible
- Programmatic
- User-Defined

- **Assessment**
- **Weights**
- **Vaccine Profile**
- **Print**

- Flu: 52
- Rota: 48
- Pneum: 52
- HPV: 52
- Iboa: 44

![Bar chart with scores for different vaccines]
Multi-Criteria Systems Analysis

SMART Vaccines

Select vaccine candidates to compare. Set attributes and scores. View SMART Score calculated for total population.
NOTE: Orange highlighted scores have been altered in Analysis; Vaccine Profile.

<table>
<thead>
<tr>
<th>Attributes Selected</th>
<th>United States Vaccine Candidates: Values (Scores)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost-Effectiveness ($/QALY)</td>
<td>10336 (99)</td>
</tr>
<tr>
<td>Disease Raises Fear and Stigma in the Public</td>
<td>no (0)</td>
</tr>
<tr>
<td>Serious Pandemic Potential</td>
<td>yes (100)</td>
</tr>
<tr>
<td>Eradication or Elimination of the Disease</td>
<td>no (0)</td>
</tr>
</tbody>
</table>

SMART Score

Legend

Health | Economic | Demographic
Public | Sci/Business | Programmatic
Intangible | Policy | User-Defined

Analysis
- Assessment
- Weights
- Vaccine Profile
- Print

INSTITUTE OF MEDICINE
NATIONAL ACADEMY OF ENGINEERING
THE NATIONAL ACADEMIES
Advisors to the Nation on Science, Engineering, and Medicine
The “Traditional Core Areas”

• Informatics
• Genomics
• Communication
• Cultural competence
• Community-based participatory research
• Global health
• Policy and law
• Public health ethics

• Strategic planning (systems analysis)
A Call to Action

Public health education needs to:

• offer courses on systems analyses.
• promote active practical use of software tools just as in engineering and business schools.
• produce leaders and analysts who understand and can create systems analyses for priority setting and program evaluation.

The time is now. The need is great.
Thank you for your attention
A Multi-Criteria Approach

| Health Considerations | • Premature Deaths Averted per Year
| | • Incident Cases Prevented per Year
| | • QALYs Gained or DALYs Averted
| Economic Considerations | • Net Direct Costs (Savings) of Vaccine Use per Year
| | • Workforce Productivity Gained per Year
| | • One-Time Costs
| | • Cost-Effectiveness ($/QALY or $/DALY)
| Demographic Considerations | • Benefits Infants and Children
| | • Benefits Women
| | • Benefits Socioeconomically Disadvantaged
| | • Benefits Military Personnel
| | • Benefits Other Priority Population
| Public Concerns | • Availability of Alternative Public Health Measures
| | • Potential Complications Due to Vaccines
| | • Disease Raises Fear and Stigma in the Public
| | • Serious Pandemic Potential
| Scientific and Business Considerations | • Likelihood of Financial Profitability for the Manufacturer
| | • Demonstrates New Production Platforms
| | • Existing or Adaptable Manufacturing Techniques
| | • Potential Litigation Barriers Beyond Usual
| | • Interests from NGOs and Philanthropic Organizations
| Programmatic Considerations | • Potential to Improve Delivery Methods
| | • Fits into Existing Immunization Schedules
| | • Reduces Challenges Relating to Cold-Chain Requirements
| Intangible Values | • Eradication or Elimination of the Disease
| | • Vaccine Raises Public Health Awareness
| Policy Considerations | • Interest for National Security, Preparedness, and Response
| | • Advances Nation’s Foreign Policy Goals
| User-Defined Attributes | • Up to Seven Attributes |