Hookworm

Ancylostoma duodenale, Necator Americanus

Intestinal Nematode

Aliaa Tayea*, Sina Helbig, Akre M Adja, Neil Arya**

Prepared as part of an education project of the Global Health Education Consortium and collaborating partners

*First author **Corresponding author
4.1 Epidemiology

- Common disease with at least 740 million people infected globally (estimates up to >1 billion)

- Causes more morbidity than any other geohelminth principally by consequences of iron-deficiency anemia
 - Hookworm infection is the leading cause of iron deficiency anemia worldwide

- Largely worldwide distribution, prevalent in all tropical and subtropical countries, especially sub-Saharan Africa, South China, Pacific and South-east Asia
4.2 Risk factors

- Poor sanitation
- Walking barefoot in soil contaminated with feaces
- Infection by *A. duodenale* probably also occurs by oral and transmammary route

Photo: http://www.johntyman.com/africa/a442.jpg
4.3 Biology

• Human infection caused by 2 hookworms
 o Small white-grey or reddish-brown thread like worms

• *Ancylostoma duodenale*
 o Buccal capsule containing 2 pairs of teeth for attachment to the small-intestinal mucosa
 o Male: 1 x 0.5 cm
 o Female: 1.2 x 0.6 cm
 o Maximum egg output 15-18 months after infection
 o Interval between infection and disappearance of eggs from stool with death of the worm averages 1 year
 o Female produces 25,000-35,000 eggs/day (18-54 million during its lifetime)
 o Adult worm lives 1-3 yrs (often longer)
4.3 Biology

• *Necator americanus*
 - Shorter and more slender than *A. duodenale* (1 x 0.4 cm)
 - Smaller buccal capsule than *A. duodenale*
 - Cutting plates instead of teeth
 - Eggs slightly larger than *A. duodenale* (70 x 40 μm)
 - Female produces ~20,000 eggs daily
 - Adult worm lives 3-10 yrs (3-5yrs for female worm)

• Humans are definitive host
4.3 Life cycle

- Eggs are deposited in duodenal lumen
- Leave body through feaces
- If deposited in damp shaded soil they hatch into rhabditiform larva (first stage)
 - Feeds on organic debris
 - Becomes elongated and fully developed
- Larva moult to form a filariform larva (infective stage → moves away from the feaces into soil)
- Protected from desiccation, they can live in warm damp soil for up to 2 yrs
- Filariform larva penetrates skin of host when contact initiated → receives host signal to resume development
- Enters vasculature → travels to lung → breaks through alveoli, moves up trachea, is swallowed and reaches small intestine
- During migration 3rd moult takes place, → upon arrival in intestine 4th moult
- Worm attaches to the small-intestinal mucosa where it sucks blood
- *A. duodenale* can also infect by ingestion
4.4 Pathology

• 3 stages (first two usually only seen in primary infection, during larva migration phase)

 o Invasive phase
 ▪ Vesiculation and pustulation at entry site

 o Migration via venous system through the lungs with small hemorrhages into the alveoli and eosinophilic and leucocytic infiltration
 ▪ Coughing, asthma and bronchitis (Loeffler’s Syndrome)
 ▪ Larvae moved up, either by coughing or ciliary escalator to pharynx where they are swallowed → move to intestines

 o Established infection by adult worms in intestine
 ▪ Seen in the inhabitants of endemic areas
 ▪ May be asymptomatic or, in case of severe infections, lead to anemia
4.4 Symptoms

• Initial invasive stage
 o Entry site of larva: ground itch (irritating vesicular rash)
 ▪ Limited to the area around entry points of the body (usually palms and soles, between toes)
 o Lasts up to 10 days

• Larva migration phase
 o Appear 1-2wks after the primary infection, and depend on worm burden
 o Pulmonary symptoms with dry cough, asthmatic wheezing, fever, high eosinophilia
 ▪ Wheezing less pronounced than with *A. lumbricoides*
 o Low-grade fever may be present
 o Entire episode usually of 2-3m duration – mostly self-limiting
4.4 Symptoms

- Later, established infection
 - Epigastric pain upon worm migration
 - Can be relieved by food → DDx: duodenal ulcer!
 - Symptoms peak at 30-45d after infection and gradually disappear
 - Occult blood in stools to frank melena
 - Results when hookworm detaches from one site in intestine to move to another location
 - Iron deficiency anemia
 - Occurs after iron stores are depleted
 - Protein-depleting enteropathy (hypoalbuminemia): puffiness, edema
 - Retinal hemorrhages
4.4 Symptoms

- Effects of anemia: malaise, digestive disturbance, no wasting
 - Each worm consumes .03-.6 mL of blood per day
 - Usually 40-160 worms are enough to cause anemia
 - 500-1000 = significant blood loss and anemia even in the presence of iron supplementation
 - Shortness of breath, high output heart failure

- Severe infection - persistent anemia in children may have severe long-term consequences
 - Stunting of growth and development, cognitive impairment
4.5 Diagnosis

- Detection in stool
 - Ova: thin clear shell
 - Sometimes also detection of rhabditiform larva in stool (DDx: Strongyloides)
 - Ova appears about 42d after infection
 - Sensitivity can be increased by examining multiple samples over consecutive days
 - Kato-Katz smear provides quantitative estimate (samples should be examined within an hour of preparation or earlier, depending on heat and humidity conditions)

- Serological diagnostic
 - Multiplex real-time PCR
4.6 Management/Treatment

- Treatment of anemia (iron supplementation)
- Treatment is targeted against adult stages
- Albendazole
 - 400mg single dose (80% cure rate)
 - 200mg daily x 3 days (100% cure rate)
- Mebendazole: only partially active and treatment over multiple days might be required for severe infections
- Levamisole and pyrantel pamoate are less effective
4.7 Control

- Proper disposal of faeces to minimize risk of contact with body
 - Provision/proper use of sanitation facilities

- Good hygiene to break fecal-oral transmission route

- In some (endemic) areas regular de-worming of children and examination of lactating mothers

Toxocariasis

ROUNDWORMS
5.1 Epidemiology

- Result of infection with dog ascarid *Toxocara canis* (most common) or the cat ascarid *Toxocara cati*
- Cosmopolitan in distribution
- Often associated with *A. lumbricoides* and *Trichuris trichiura* infection
- Mortality unusual; morbidity largely due to ocular involvement
 - Toxocariasis is an important cause of reduced visual acuity in tropical areas

Photo: http://www.cdc.gov/parasites/images/toxocariasis/home_page_image_toxocariasis.jpg
5.2 Risk factors

- Exposure to (particularly young) dog and cat faeces
 - Direct contact not necessary, as eggs need weeks of development in soil to become infective
 - Small children; more hand-to-mouth contact during play

- Outdoor parks in urban and suburban environments
 - Most likely to be contaminated by animal faeces
 - Children playing in the sand/soil higher risk of accidentally ingesting *Toxocara* eggs

- Pet ownership (litter)

- Geophagia (both in children and adults)
5.3 Biology

- Definitive hosts are dogs (*T. canis*) and cats (*T. cati*)

- Humans are incidental hosts; parasite does not undergo normal development in humans after ingestion

- Infected embryonated eggs ingested after exposure from soil/sand contaminated by dog/or cat faeces

- Eggs ruptured in GI tract, releasing larvae; further development is arrested at the larval stage

- Morphology similar to *A. lumbricoides*
 - Male worms: 40 – 60 mm long; Female worms: 65 - 100 mm long
 - Eggs: 85 x 75 µm
5.3 Biology

- Larvae survive in humans for months to years, causing damage to tissues as they wander through body
 - Complex mechanisms to evade immune system

- 3 recognized syndromes
 - Covert toxocariasis (long-term exposure to migrating juvenile larvae)
 - Visceral larva migrans (VLM)
 - Ocular toxocariasis (ocular larva migrans or OLM)

Photo: https://cms.revoptom.com/handbook/IMA/GES/oct02_sec5_fig7.jpg
5.3 Life cycle

- Life cycle in cats and dogs is similar to *A. lumbricoides* infection in humans.
- Difference: transplacental infection is common with offspring shedding numerous eggs from birth.
- Adult animals excrete few eggs.
- Dogs/cats are infected by ingesting eggs from contaminated soil.
- Eggs hatch in stomach of humans.
- Second stage larvae penetrate mucosa to enter circulation via the mesenteric vessels → intestinal viscera and liver → may stay there or travel to lungs, brain, eye.
- Larvae are eventually destroyed by granulomatous reaction → blocks further migration and causes pathology.
- Larvae can remain alive for > 11yr in humans.
5.4 Pathology

• Visceral larva migrans (VLM)
 o Stage larvae are arrested mostly in the liver where they cause few or many lesions. Granulomas form which can be seen as white subcapsular nodules
 o Other sites: lungs, kidneys, heart, striated muscle, brain, eye

• Ocular toxocariasis
 o Granulomatous reaction forms a large subretinal mass with a superimposed pathology of choroiditis which can closely resemble retinoblastoma

• Tissue damage due more to host inflammatory response to larvae than to parasite itself
5.5 Symptoms

- Symptoms depend on intensity of infection; most cases asymptomatic

- Incubation period dependent on worm burden (weeks to years)

- VLM can be self limiting to lethal (unusual)

- Ocular lesions can lead to strabismus, decrease in vision or blindness

- Milder infection more common in adults: ocular toxocariasis
5.5 Symptoms – Covert toxocariasis

• Covert toxocariasis in children (mainly <5yrs) usually subclinical or mild febrile illness
 o May result from long term exposure to migrating juvenile larvae
 o Can manifest as cough, behavioural or sleeping problems, headache, chronic/recurring abdominal pain, anorexia

• May also have lymphadenitis, hepatomegaly

• *Toxocara* titres lower than in VLM, and eosinophilia less common and less pronounced

• Long-term exposure of larvae to lungs can lead to asthma
5.5 Symptoms - VLM

- Classic VLM syndrome
 - Fever, coughing/wheezing, anemia, hepatomegaly, eosinophilia, positive *Toxocara* titre
 - Most commonly with heavy infection in childhood

- Pulmonary signs (e.g. coughing, wheezing), asthma

- Cardiac dysfunction

- Nephrosis

- CNS involvement: aseptic meningitis, mass lesions causing seizures*, paresis (spinal cord lesions)

*less common, but may contribute to higher rates of epilepsy in parts of developing countries with high infection rates
5.5 Symptoms – Ocular toxocariasis

- Usually unilateral

- Presenting symptoms is often strabismus due to macular damage → low grade iridocyclitis can progress to general endophthalmitis and retinal detachment
 - Eye pain

- If lesion is central → decrease in visual acuity

- Solid retinal tumor close to macula

- In early stages closely mimics retinal neoplasm since it is raised above the level of the retina

- Later lesion remains a clear-cut circumscribed area of retinal degeneration
5.6 Diagnosis

- SVLM
- Stable persistent eosinophilia (sometimes >70%), leucocytosis, hypergammaglobulinemia
- Decreased albumin:globulin ratio, increase in IgG, IgH, anti-A and anti-B isohemaglutinin titres
- High resolution ultrasonography: hypoechoic areas in liver
- Demonstration of larvae is difficult and seldom achieved, sometimes found partially destroyed in centre of granuloma
- Serology: ELISA using excretory-secretory antigens harvested from second stage larvae in vitro
 - Sensitivity > 95%, specificity > 90%
 - Can be improved by indirect Ab – competition: e.g. specific IgE, IgG4
- Ocular toxocariasis
 - Ophthalmological examination; second stage larvae rarely seen with slit-lamp microscope in anterior chamber of eye
5.7 Treatment

- **Anti-helminthic therapy for VLM**
 - Albendazole (preferred), Mebendazole, Thiabendazole
 - DEC reportedly more effective than benzimidazoles but more adverse reactions

- In VLM, eosinophilia may persist over months after clinical cure (decrease in hepatomegaly, subsiding fever)

- Possible increased inflammatory reaction during therapy; corticosteroids often beneficial

- Treatment of OLM more difficult, surgical therapy may be needed for severe disease

- Recurrence unlikely, providing risk factors mitigated
5.8 Control

- Breaking hand-to-mouth transmission especially in children
 - Hand washing before eating, especially after handling pets, pet litter or soil
- General education on disease, transmission and risk factors for toxocariasis
- Animal control in public areas
 - Fencing, limiting access to playgrounds
- Regular de-worming of dogs and cats

Photo: http://www.vetbiomed.murdoch.edu.au/nombatnews/content_images/Deworming-CommunityProject.JPG
Dracunculiasis

Guinea worm disease
6.1 Epidemiology

- Dracunculus = Latin “little dragon”; also called “Guinea fire worm”
- Infection caused by nematode *Dracunculus medinensis*
- Found in abundance in natural freshwater bodies
- Presence is an indicator of extreme poverty
- Mortality is low - associated with untreated secondary infection
- Morbidity is high - associated with months of debilitating pain, incapacitation

Photo: http://plpnemweb.ucdavis.edu/nemaplex/taxadata/Dmedinensis.HTM
6.1 Epidemiology

- > 3.5 million cases, in 20 countries, reported in the 1980s
- Following eradication campaigns since 1986, dramatic reduction (>99%) in reported cases
 - 5,000 in 2008
 - <1,800 in 2010 (94% in South Sudan)
- Sustained campaigns (largely by Carter Center) of community education, safer water provision (especially using appropriate filters), political mobilization
- Remains endemic in only 6 African countries: Ethiopia, Ghana, Mali, Niger, Nigeria and Sudan

6.1 Distribution

Certification of Dracunculiasis Eradication
Status as of January 2005

Countries not yet certified
Endemic countries (reporting indigenous cases in 2004)
Countries under pre-certification surveillance
Countries and territories certified free of transmission

Data Source: WHO
Map Production:
Public Health Mapping & GIS
Communicable Diseases (CDS)
World Health Organization
© WHO 2005. All rights reserved

6.2 Risk factors

- Dependence on poor quality drinking water, unsafe water sources
- Drinking water from still freshwater reservoirs
 - Ponds, shallow wells, streams, etc.
- Contact of affected individuals with water sources, continuing transmission cycle
- Civil unrest, hindering other efforts to control disease and associated risk factors (e.g. S. Sudan)
6.3 Biology

- Nematode parasite related to filarial worms
- Larvae released into water by adult female worms
- Vectors: cyclopoid copepods (water fleas) – tiny free swimming crustaceans – swallow larvae after release
 - Development within vector, larvae infective after ~ 3wks
- Humans acquire infection by drinking water containing the copepod vectors infected with guinea worm larvae
- Stomach digestive acids kill copepods, but not larvae
 - Larvae migrate through stomach wall into subcutaneous tissue of abdomen, thorax
• After 2-3 months, worms develop and mate, after which males die; females continue their development and migration.

• Adult female guinea worm
 - Up to 60-80cm long and 1.5-2mm thick
 - Inhabits the subcutaneous connective tissues of humans
 - Located anywhere in the body; in late stage usually attracted to lower extremities (most likely to come into contact with water)

• Formation of blister, which bursts after ~48hrs

• Female worm protrudes its tip through resulting ulcer, releasing fluid filled with larvae upon contact with water.

• Embryos taken up by vector, and cycle begins again.
6.3 Life cycle

• Human is seeking freshwater reservoir for relief → blister ruptures → discharge of first stage larvae into water

• It remains protruding for the next 2-6 weeks, releasing larvae each time

• Larvae are infective in water for 5-6 days

• For further development must within this period be swallowed by a copepod → penetrates gut wall and reaches the infective 3rd stage within 2 weeks
6.4 Symptoms

- Usually asymptomatic in **prepatent period** (interval between infection of an individual by a parasitic organism and the first ability to detect from that host a diagnostic stage of the organism)

- First symptoms occur a few days prior to the worm piercing the skin, and largely related to hypersensitivity reaction

- If worm is close to joint may also cause arthritis

- Dermis becomes elevated and blister develops
 - with intense burning, itching sensation
 - ~24-48 hrs later blister bursts
 - Intense sensations provoke patient to submerse area in water, which relieves some of the burning sensation
Further inflammation or calcification of worms may cause stiff joints in lower limbs → crippling of patient

If secondary bacterial infection of ulcer (common), cellulitis or tetanus can develop

If worm is only incompletely extricated, the worms withdraws into the host causing a severe inflammatory reaction with ulcer formation and scarring

Encysting or calcification of worms, sterile subcutaneous abscess formation

Rarely migration of worms to vital organs
 - Brain - cerebral/subdural abscess can develop
 - Eyes - blindness can develop
6.4 Symptoms

Ulcer formed after worm emerges from burst blister; these frequently become infected.

(Photo credit: Global 2000 / The Carter Center)
6.5 Diagnosis

• Diagnosis usually clinical; cannot diagnose in prepatent period = first 8-10 months of infection
 o Shortly prior to appearance the worm can sometimes be palpated under the skin
 o Later: observing female protruding from the blister
 o Typical appearance of blister with local itching, burning pain

• Serology is of no practical use in diagnosis
 o Constant exposure in high endemic areas – variably detectable antibody titers
 o No acquired immunity
 o People in endemic areas suffer from repeated infections

• High eosinophilia is common

• Dead calcified worms can be seen on radiographic imaging
6.6 Treatment

- Affected areas should be kept clean & bandaged
- Most effective: slow extraction of emergent guinea worm
 - Protruding part of the adult female worm is attached to a stick, which is twisted a small amount each day until the whole worm has been removed (can take up to a month)
 - Care should be taken not to break the worm
 - Should be accompanied by supportive antibiotics, cleaning and dressing of ulcers as well as Tetanus vaccination
- Antibiotics for secondary/superinfection
- Analgesics for pain

Photo: http://www.parasitemuseum.com/wp-content/gallery/guinea-worm/guineaworm2j_lores.jpg
6.6 Treatment

Slow extraction of adult female worm after emergence from blister

6.6 Treatment

- Surgical extraction of the guinea worm prior to eruption – has resulted in less associated disability
 - However, not widely available in problematic area

- No curative antihelminthic treatment is available
 - Niridazole has been reported to decrease inflammation around the worm, allowing for easier extraction
 - Metronidazole, thiabendazole (adults) also used as adjunct to stick removal; however to be used with caution due to one study’s finding that these were associated with aberrant migration of worms
6.7 Control

• Community education on disease & transmission
 o Educating affected individuals not to immerse the affected areas in water which is used for public consumption

• Promotion and provision of safe drinking water sources

• Boiling water

• Point-of-use filtration of drinking water to “strain” copepods
 o Nylon filters, straw filters
 o Low-cost methods effective, e.g. filtration through clean cloth

• Larvicide to kill copepods
6.7 Control

Simple filtration of water to remove copepod vectors

(Photo: Carter Center/L. Gubb)
6.7 Control

Pipe filters: portable, for use anytime and at any water source available.

Photo: Carter Center / L. Gubb
Acknowledgments

• Thanks to Jenna Kelly, Shazeen Bandukwala and Melissa Whaling for critical editing.
• We appreciate Tim Brewer and Jackeline Alger for thoughtful review.
Credits

Akre M Adja¹, Sina Helbig², Alia Tayea³, Neil Arya⁴

¹: Institut Pierre Richet, Université de Cocody Abidjan
²: Boston University School of Medicine, Division of Infectious Diseases, Boston, MA, USA
³: Médecins Sans Frontières
⁴: Western University, University of Waterloo, McMaster University

Contact narya@uwaterloo.ca
The Global Health Education Consortium and the Consortium of Universities for Global Health gratefully acknowledge the support provided for developing teaching modules from the:

Margaret Kendrick Blodgett Foundation

The Josiah Macy, Jr. Foundation

Arnold P. Gold Foundation

This work is licensed under a [Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License](https://creativecommons.org/licenses/by-nc-nd/3.0/us/).